skip to main content


Search for: All records

Creators/Authors contains: "Walters, Annika W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Accelerating the design and implementation of environmental flows (e-flows) is essential to curb the rapid, ongoing loss of freshwater biodiversity and the benefits it provides to people. However, the effectiveness of e-flow programs may be limited by a singular focus on ensuring adequate flow conditions at local sites, which overlooks the role of other ecological processes. Recent advances in metasystem ecology have shown that biodiversity patterns and ecosystem functions across river networks result from the interplay of local (environmental filtering and biotic interactions) and regional (dispersal) ecological processes. No guidelines currently exist to account for these processes in designing e-flows. We address this gap by providing a step-by-step operational framework that outlines how e-flows can be designed to conserve or restore metasystem dynamics. Our recommendations are relevant to diverse regulatory contexts and can improve e-flow outcomes even in basins with limited in situ data.

     
    more » « less
  2. Abstract Rivers that do not flow year-round are the predominant type of running waters on Earth. Despite a burgeoning literature on natural flow intermittence (NFI), knowledge about the hydrological causes and ecological effects of human-induced, anthropogenic flow intermittence (AFI) remains limited. NFI and AFI could generate contrasting hydrological and biological responses in rivers because of distinct underlying causes of drying and evolutionary adaptations of their biota. We first review the causes of AFI and show how different anthropogenic drivers alter the timing, frequency and duration of drying, compared with NFI. Second, we evaluate the possible differences in biodiversity responses, ecological functions, and ecosystem services between NFI and AFI. Last, we outline knowledge gaps and management needs related to AFI. Because of the distinct hydrologic characteristics and ecological impacts of AFI, ignoring the distinction between NFI and AFI could undermine management of intermittent rivers and ephemeral streams and exacerbate risks to the ecosystems and societies downstream. 
    more » « less
  3. Abstract

    We used historical stocking and population survey records of Yellowstone Cutthroat TroutOncorhynchus clarkii bouvieriand other salmonids in the North Fork Shoshone River drainage, Wyoming to summarize fish stocking history and population trends. Based on 98 years of historical records, we found that despite extensive stocking of Yellowstone Cutthroat Trout and minimal stocking of nonnative salmonids after about 1950, populations of wild Yellowstone Cutthroat Trout declined relative to those of nonnative salmonid species. The timing of increases in nonnative salmonids (1970s) did not coincide with their period of most intensive stocking (1935–1950). It is plausible that Yellowstone Cutthroat Trout populations persisted because of high levels of supplemental stocking from 1935 to 1965 and declined with reduced stocking efforts in the 1970s, thereby allowing the increase of introduced nonnative salmonids. The establishment of nonnative salmonids likely further reduced stocking success of Yellowstone Cutthroat Trout due to competition and hybridization. This study demonstrates that an understanding of long‐term stocking records and population survey data can be useful for developing and implementing successful management frameworks for the conservation of imperiled fish populations across the United States.

     
    more » « less
  4. Abstract

    Hybridization can profoundly affect the genomic composition and phenotypes of closely related species, and provides an opportunity to identify mechanisms that maintain reproductive isolation between species. Recent evidence suggests that hybridization outcomes within a species pair can vary across locations. However, we still do not know how variable outcomes of hybridization are across geographic replicates, and what mechanisms drive that variation. In this study, we described hybridization outcomes across 27 locations in the North Fork Shoshone River basin (Wyoming, USA) where native Yellowstone cutthroat trout and introduced rainbow trout co‐occur. We used genomic data and hierarchical Bayesian models to precisely identify ancestry of hybrid individuals. Hybridization outcomes varied across locations. In some locations, only rainbow trout and advanced backcrossed hybrids towards rainbow trout were present, while trout in other locations had a broader range of ancestry, including both parental species and first‐generation hybrids. Later‐generation intermediate hybrids were rare relative to backcrossed hybrids and rainbow trout individuals. Using an individual‐based simulation, we found that outcomes of hybridization in the North Fork Shoshone River basin deviate substantially from what we would expect under null expectations of random mating and no selection against hybrids. Since this deviation implies that some mechanisms of reproductive isolation function to maintain parental taxa and a diversity of hybrid types, we then modelled hybridization outcomes as a function of environmental variables and stocking history that are likely to affect prezygotic barriers to hybridization. Variables associated with history of fish stocking were the strongest predictors of hybridization outcomes, followed by environmental variables that might affect overlap in spawning time and location.

     
    more » « less